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Abstract— Automatic feature identification from orbital
imagery would be of wide use in planetary science. For
example, the ability to count craters on homogeneous
surfaces would enable relative dating of geological
processes. The scaling of crater densities and impact rates
with crater size is another important issue which could be
addressed by automated crater counting. Geological feature
cataloging can practically be achieved by hand-labeled
imagery only for restricted numbers of features. To handle
massive new data sets and higher resolutions such as those
arising from Mars Global Surveyor, automated feature
identification will be required. Many pattern recognition
algorithms could be applied to this problem, but a systematic
validation process will be required to select the best method
for each scientific application and to determine its reliability
for scientific use.

We demonstrate such a validation process applied to a
particular trainable feature identification algorithm when
used to detect craters in synthetic imagery and in Mars
Viking Orbiter imagery. The feature identification
algorithm is the Continuously Scalable Template Matching
algorithm of (Burl et al., 2001) The validation process
involves separate experiments for subpopulations selected
from a labeled crater corpus. The subpopulations are
defined by crater density. For the selected subpopulations,
the validation process includes training the algorithm on
some craters and testing its identification accuracy on others.
These results can be summarized in terms of statistical
efficiency measures. Efficiency results depend on the
subpopulation tested. We illustrate algorithm performance
on data of several Martian regions of high scientific interest.
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1. INTRODUCTION

Problem: Geological Feature Identification

There is a widespread recognition by Mars planetary
scientists of the need to identify large numbers of features
such as craters, faults, ridges, and channels, as well as
relationships between such features, in order to infer the
history of important geological processes on Mars.
Processes of major interest include water floods, wind or
water erosion, volcanic lava flows, ash falls, and impact
cratering, all of which are believed to have contributed to
the modification of the Martian surface. A diverse suite of
features observed from Viking and Mars Global Surveyor
MOC imagery, for example, bear close resemblance to
glacial, fluvial, lacustrine, periglacial and mass-movement
features of Earth. If such features exist(ed) on the surface of
Mars, then processes requiring a relatively dense atmosphere
and related transport and precipitation of water are
necessary for their formation (Baker, 2000). The anomalous
character of these landforms in regard to the very cold, dry
present-day Martian conditions have been interpreted to be
the result of one or more short-duration (perhaps 10° to 10°*
years) episodes of environmental change occurring since
about 10’ to 10® years ago (Baker, 2001). Such landforms,
coupled with other features such as faults and fractures, pit
crater chains, and fluvial channels, many of which cut some
of the stratigraphically youngest materials on Mars and that
often lack impact craters on their floors, could be
representative markers of a recent volcanically, tectonically,
and hydrologically active Mars.

Whether Mars has been recently hydrologically,
tectonically, and volcanically active is a topic of widespread
scientific debate, especially because of its extreme
significance to the near-term exploration, investigation, and
identification of aqueous, hydrothermal, and/or biologic
activity. Although diverse geological information
consistently and coherently indicate a recent or perhaps a
currently active Mars, the development and validation of
state of the art automatic feature identification methods will
permit the planetary community to readily map, document,
and catalog the geometric shapes and stratigraphic positions
among geological features such as impact craters and faults,
which will in turn yield improved interpretations of the
geological and paleoclimatological histories of Mars at
local, region, and global scales. Although the scientific
community has performed such analyses since the Mariner
and Viking missions, tools used up until now simply assist
hand-scanning by knowledgeable experts, so that
comprehensive data sets take many years to build. As an



example catalog of all Martian impact craters larger than
about 5 km in diameter was produced by N. Barlow in the
1980s using the Viking 1:2,000,000 scale photomosaics
(Barlow, 1988). The Catalog of Large Martian Impact
Craters contains information on 42,283 impact craters
across the entire Martian surface. However this approach is
unlikely to scale up successfully to the full variety of
geological features relevant to complex hypothesis, nor does
it address possible observer bias. An even more serious
problem is that of handling new high-resolution image sets
(VO, MOC, MOLA). Furthermore, new refined state of the
art feature detection techniques will enable past Herculean
mapping efforts, which often times took years for a mapper
to complete due to the time-intensive mapping and relative
age determination of geologic features and terrains
(including determining crater densities), to be much more
time efficient and cost effective. That in turn will yield high
scientific returns. For these reasons it is becoming
increasingly important to provide the scientific community
with automated tools which can assist in global analyses on
scaled-up data sets and complex feature interactions.

The classical approach to detect geological features
involved the recognition and definition by planetary
scientists of their need to identify large numbers of objects
such as craters for surface dating studies in large volumes of
image data; this problem definition was followed by
computational research in applying and adapting standard
pattern recognition methods to the identification of such
objects; finally planetary scientists could qualitatively
evaluate the algorithm performance. In this paradigm, the
accumulation of successively higher volume data sets from
robotic missions required either heroic efforts at human
examination of imagery for geological content (Kanefsky,
B., Barlow, N.G. and Gulick, 2001), or new automation
tools, or both. Examples of the first approach include
Barlow’s crater catalog (Barlow, N.G., 1988, 2000),
Anderson’s fault catalog (Anderson et al., 2000), and
systematic mapping of a wider variety of feature types and
terrains.

Automated approaches to geological feature identification
have not yet gone into production use because they haven’t
been validated scientifically. Scientific validation requires
that a method actually have sufficient accuracy for some
well-defined scientific use, that it be computationally
feasible, and that its accuracy be dependably quantified as a
function of the difficulty of the feature identification
problems it must solve within the context of a particular
scientific application.

The significance of the research direction pursued here is
that it will greatly increase the scientific return from orbital
missions to Mars, and eventually landed ones, by greatly
improving the derivation of geomorphology from global
image and elevation datasets.

Previous Work

Pattern recognition algorithms taken from other application
areas such as optical character recognition, particle physics,
and medical imaging have been applied to problems
identified in planetary science. Types of features which can
be identified include circles, ellipses, lines, edges, ridges,
junctions and image templates. For example line segments
can be detected in images by the Hough Transform (HT).
The principal idea of the method is to compute a mapping
between a parameter space that defines the shape, one needs
to detect, and an image space (the original HT method was
invented for pattern-recognition in high energy physics
(Hough, 1959); one of the most complete summaries of the
HT method can be found in (Olson, 1996, 2000)). This led
to development of generalized HT, which were used to
detect craters in planetary images. A crater detection
algorithm based on GHT for circle detection was applied
and examined (Honda et al., 1999) for selected lunar images
(Clementine, LDIM); the method was not validated for
scientific use. An ellipse/edge detection method based on
GHT was also used for crater detection on asteroids for
spacecraft position estimation and choosing a landing site
(Johnson et. al., 2001; Johnson, 2000, Leroy et. al., 1999).
The efficiency of the method (defined as a ratio of detected
craters to true craters) was about 20%, which was acceptable
for addressing navigational/landing problems.

A second general approach begins with template matching.
Image pixel arrays are rotated, translated or otherwise
transformed to match pieces of an image. This establishes
an image-based paradigm, which may be extended to
matched spatial filters, principal components methods and
artificial neural networks (Brunelli and Poggio, 1995). For
example, Venusian volcanoes were identified from Magellan
radar data in (Burl, Asker et al., 1998) which provides ROC
curves for several related detectors compared to several
hand-labelings. A subset of the data was deposited with the
UC Irvine machine learning benchmarks repository.

The Continuously Scalable Template Matching (CSTM)
algorithm is an image-matching algorithm which was
implemented and tested on selected lunar crater images as
reported in (Burl et al. 2001), complete with ROC curve.
The algorithm uses examples (templates) provided by a
scientist to generate a model for target detection in a user-
specified continuous range of scales. The statistical
efficiency of the implemented algorithm on the regions of
the Lunar Maria (provided by Clementine) was about 80%
for craters larger than four pixels in diameter with a 12%
false alarm rate. However, complexity in the background
terrain for the crater detection (images of Europa, for
example) caused a reduction in algorithm performance.

Spatially invariant versions of current Support Vector
Machine (SVM) algorithms were reported in (DeCoste and
Scholkopf, 2001) where they were demonstrated to improve
the world record on the MNIST database of 10,000 digit



recognition problems. They were also shown to improve the
previous best ROC curves for the Magellan volcanoes.
Speedup techniques, which make SVM competitive with
trained feed forward neural nets in recognition speed are
discussed in (Decoste ,2001). Both CSTM and ISVM
algorithms can, at increased expense, be made to check for
model instances at a variety of orientations and sun angles in
cases where those parameters are not known or predictable.

In this paper, we will use the CSTM algorithm and subject it
to systematic tests. Much of the validation methodology
was introduced in (Burl et al, 2001). The novel
applications here are to synthetic imagery with arbitrarily
scalable ground truth, and to real Mars imagery. The use of
synthetic imagery is expected to be an important in scaling
up scientific validation of algorithm performance to large
Mars datasets for which hand-labeled data is too expensive
to obtain. In addition, quantification of algorithm
performance is extended here due to the availability of
synthetic imagery and ground truth.

2. EXPERIMENTAL METHODS

For any feature identification system there are important
quantitative measures of success. These include the
probability of finding a target that is really there (detection
efficiency, or “recall” in information retrieval), and the
probability that an output detection actually corresponds to a
real target (detection purity, or “precision”). If detection
includes parametric outputs like position or scale, the
accuracies of these outputs also can be measured. In that
case, one may need to set a numerical criterion for sufficient
accuracy for a “successful” detection before reporting either
efficiency or purity. After such a criterion is defined,
efficiency of the algorithm for feature identification can be
calculated as a ratio of number of detected features to the
number of “ground truth” features.

To define the “ground truth” for any surface we require
adequate amounts of labeled image data. The most valuable
such data is expert-labeled imagery of Mars, such as Viking
Orbiter imagery with co-referenced feature label catalogs in
Barlow’s catalog of 42,283 Mars craters of size more than
4km (Barlow, 1988). However, expert-labeled data do not
cover small size features (such as craters of less than 4 km in
diameter, for example) which are very important for the
scientific application, nor does it solve the problem of
observer bias. The problem of reliability and biases of
expert labeling was addressed for Venus volcano labeling
(Smyth. et al., 1995) and for MOC crater labeling (Kanefsky
et al., 2001).

Another approach for “ground truth” number estimation is
the use of simulated terrain, where neither a problem of
human biases, nor a size problem exist since features of any
size (in the pixel space) with a known map location can be
generated.  Although Monte Carlo simulations almost

always have some systematic and important differences from
real data, they provide a volume of labeled data that is
inexpensive, inexhaustible, correctly labeled, and can be
similar enough to real data that trainable algorithms can be
retrained to real data once they are functioning on synthetic
data. We will use an updated version of R. Gaskell’s terrain
simulator (Gaskell, 1993, Gaskell 2001), which can support
our goals as an analytical and predictive tool. The Martian
terrain simulator has been used for rover navigability
studies. It includes a number of simulations, each
representing a specific geological process including impact
cratering. Since it was created specifically for Mars, it
includes Martian geological history up to the present
knowledge with an appropriate parameterization. For the
efficiency study we will use simulated terrain of the varying
complexity and account for the potential problems in
simulated vs. real terrain by scaling algorithms (the
approach is discussed in detail in (Vinogradova, 1999)).
Figure 1 shows simulated terrains of a different crater
density with a generated crater size distribution.
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Figure 1. Example of simulated terrain with different crater
densities; histograms show the distribution of crater
diameters in pixels corresponding to each terrain.

Typically a detector is also parameterized by likelihood
cutoffs and other parameters that affect the tradeoff between
detection efficiency and purity; for each value of allowed
impurity (1 - purity, also known as the false alarm rate) there
is some optimal parameter set with maximal efficiency and
we can plot that maximal efficiency as a function of allowed
impurity.  This is the well known Receiver Operator
Characteristic or ROC curve, which shows the tradeoff
between efficiency and purity.

Individual feature detectors are able to detect their targets in
the image with some probability (efficiency) and false alarm
rate (l-purity) as summarized in an ROC curve. Each
detector is equipped with a crucial numerical readout: a
measure of the likelihood of the detected match. If we
sweep through possible values of a cutoff threshold for this



likelihood, eliminating detections in the order of increasing
likelihood, we can make a series of measurements of purity
and efficiency to be plotted against one another in the ROC
curve.

Thus
6 = variable likelihood threshold, € [0,1]

13 = fixed detection distance threshold

0 b number of features detected, with
n( ’ ) ~ likelihood p > 6 and distance D < D

N = total number of features

M(B; ﬁ)z total number of detections with D < ﬁ
£(0) = efficiency = n(B;lA))/ N
7(6) = purity = precision = n(0; ﬁ)/ M (6’;13).

This function should in principle be monotonically

increasing in @, hence invertible, but may not be for actual
detectors. The function M (Q;D) is, however,

monotonically decreasing in @ and hence invertible.

Finally the translation- and scale-invariant “distance”
function between a detected feature at (x, y) with radiusr,

and a true feature at (x’, y') with radius7’, is taken to be:

(=Y +(-y) |, (=)
rr/ rr/

D(x,y,r;x’",y',r')=

which has a visually acceptable threshold of about 2 or 3.
This distance function differs from the one used for the same
purpose in (Burl et al., 2001), which measured instead
relative area of crater overlap.

Using these definitions, the ROC curve at a given distance
threshold D is determined by

&(m) = 6(9(72: ﬁ)ﬁ)= ﬂM(H(ﬂ‘, ﬁ)f))/ N.

This expression only makes sense if 7[(9) is invertible.
Otherwise, the definition may be taken to be:

&(7r) = max O(opr) 8(0; D)

which is monotonically nonincreasing. Conventionally the
ROC curve is actually 6‘(¢ =]- 72') where ¢ is the false
alarm rate.

3. RESULTS AND ANALYSIS

Figure 2 shows a moderately cratered synthetic crater image
with detections and ground truth superimposed. Figure 3
shows histograms of crater sizes in pixels and in meters for
the moderately and heavily cratered images used here.
Figure 4 shows a histogram of the distances D for all
detected craters (with likelihood threshold 6=0.5) to their
nearest true crater. Figure 5 shows histograms of the pixel
errors in detected crater locations for moderately and
heavily cratered terrains.

Figure 2. Simulated terrain image with detected craters
(blue) and true craters (red) superimposed. Almost all
craters (88%) are correctly detected. No spurious
craters are detected.
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Figure 3. Histogram of crater diameters in two terrains,
in pixels and in meters.
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Figure 4. Distance histogram for crater-crater matches
in moderately and heavily cratered terrain.
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Figure 5. Histogram of pixel errors in x coordinate of
detected craters shows very low error (0 or 1 pixel
displacement) in recovered crater center. (a)
Moderately cratered synthetic terrain. (b) Heavily
cratered synthetic terrain.
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Figure 6. ROC curve for detection efficiency and purity
in heavy terrain. Note very low false alarm rate. Curve
shows all points available for crater detections with
likelihood parameter p > 6 = 0.5. Lower values of 0 will
be required to explore the rest of the ROC curve. For
moderate terrain, up to 88% of craters were detected
with zero false alarms.
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We have also experimented with real Mars terrain of varying
complexity based on Viking Gazetteer Classification :
Memnonia Fossae (Latitude (-23.67, -15.51),
Longitude(140.33,164.21)) and Juventae Dorsa (Latitude (-
1.30,3.96), Longitude (71.64,73.57)). We used the Barlow
catalog for ground truth labelings of these images. The
results appear promising for crater-counting applications,
though they are not as strong as the synthetic data set results
presented above. These experiments will be fully reported
in the final paper.

4. Conclusions

The use of synthetic terrain allows for systematic validation
of crater feature detection algorithms, which can then be
extended to real Mars images for which sufficient ground
truth labeling data is difficult or impossible to obtain.
Preliminary results with the Continuously Scalable Template
Matching algorithm are promising in both domains.
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